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Abstract

Predicting individual behavior from brain functional connectivity (FC) patterns can

contribute to our understanding of human brain functioning. This may apply in partic-

ular if predictions are based on features derived from circumscribed, a priori defined

functional networks, which improves interpretability. Furthermore, some evidence

suggests that task-based FC data may yield more successful predictions of behavior

than resting-state FC data. Here, we comprehensively examined to what extent the

correspondence of functional network priors and task states with behavioral target

domains influences the predictability of individual performance in cognitive, social,

and affective tasks. To this end, we used data from the Human Connectome Project

for large-scale out-of-sample predictions of individual abilities in working memory

(WM), theory-of-mind cognition (SOCIAL), and emotion processing (EMO) from FC of

corresponding and non-corresponding states (WM/SOCIAL/EMO/resting-state) and

networks (WM/SOCIAL/EMO/whole-brain connectome). Using root mean squared

error and coefficient of determination to evaluate model fit revealed that predictive

performance was rather poor overall. Predictions from whole-brain FC were slightly

better than those from FC in task-specific networks, and a slight benefit of predic-

tions based on FC from task versus resting state was observed for performance in

the WM domain. Beyond that, we did not find any significant effects of a correspon-

dence of network, task state, and performance domains. Together, these results sug-

gest that multivariate FC patterns during both task and resting states contain rather

little information on individual performance levels, calling for a reconsideration of

how the brain mediates individual differences in mental abilities.
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Practitioner Points

• Better prediction of behavior from task versus resting-state functional connectivity (FC) only

in a cognitive domain.

• Little evidence for specificity of state, network, or task similarity.

• Predicting complex behavior based on FC remains a significant challenge.

• We extend research on brain-based behavior prediction beyond the cognitive domain.

1 | INTRODUCTION

No two individuals are alike in perception, affect, thought, and behav-

ior, but also brain structure and function. A major goal of neuroscience

is uncovering the relationships between these dimensions by investi-

gating individual differences. An approach that has recently become

popular is predicting individual behavior, affective characteristics or

cognitive abilities from brain data (Gao et al., 2019; Greene

et al., 2018; Kong et al., 2019; Larabi et al., 2021; Nostro et al., 2018;

Ooi et al., 2022; Rosenberg et al., 2020; Sasse et al., 2023; Shen

et al., 2017). Such predictive modeling is thought to yield important

insights about generalizable brain–behavior relationships and is con-

sidered a crucial step toward personalized medicine (Mueller

et al., 2013; D. Wang et al., 2015).

A number of studies in this area have shown that, for example,

regional gray-matter volume and structural connectivity significantly

predict age (Cole et al., 2017; Franke et al., 2012; More et al., 2023),

reading comprehension (Cui et al., 2018), inhibitory control (N. He

et al., 2020), or fear of pain (X. Wang et al., 2019). Similarly, functional

neuroimaging data has also been reported to predict different behav-

iors or traits, ranging from personality (Dubois, Galdi, Han,

et al., 2018; Nostro et al., 2018) or life satisfaction (Itahashi

et al., 2021) to cognitive abilities such as creative thinking (Zhuang

et al., 2021), cognitive flexibility (Chén et al., 2019), or working mem-

ory (WM) capacity (Stark et al., 2021).

While a variety of different brain characteristics have been

employed as features to predict behavior, one of the most widely

used measures (Yeung et al., 2022) is resting-state (in the following

also “rest” or “REST”) functional connectivity (FC) obtained from

functional magnetic resonance imaging (fMRI). Some recent studies,

however, suggest that behavior prediction may benefit from the use

of task-based FC, as compared to resting-state data (Avery

et al., 2020; Greene et al., 2018; Jiang et al., 2020; Rosenberg

et al., 2016, 2016; Stark et al., 2021). For example, Sripada and col-

leagues found that the correlation between predicted and observed

scores of a general cognitive ability factor improved when using FC

from the 2-back WM-task state (r = .50), as compared to using

resting-state FC (r = .26; Sripada et al., 2019, 2020). A similar pattern

has been reported for the prediction of different measures of atten-

tion (Yoo et al., 2018) as well as for the prediction of intelligence

based on FC from tasks taxing executive functioning (L. He

et al., 2021) or attention (Rosenberg et al., 2016).

Importantly, all the studies mentioned above showed an improve-

ment in prediction performance for task-fMRI data derived from the

same domain as the predicted measure (i.e., prediction of stop-signal

task performance based on FC derived from stop-signal task-fMRI

data). However, there is not only resting versus task states but rather

different task states depending on which task is performed during

fMRI data acquisition. That is, every task performed in the scanner

can be thought of as eliciting a specific state. Interestingly, it has been

shown that in predicting intelligence, using almost any other task state

(i.e., fMRI acquired during a WM task as well as an emotion task) or

task–rest combinations outperforms using resting-state FC only (Gao

et al., 2019; Greene et al., 2018, 2020; Sripada et al., 2020).

Based on the concept of convergent and discriminant validity

(Campbell & Fiske, 1959; Schumann et al., 2022), it would be

expected, however, that connectivity patterns observed during the

same or a similar task, hence coming from the same domain as the

predicted target behavior (i.e., representing the same state; conver-

gent validity), lead to better prediction performance than do patterns

observed during a task state from an unrelated domain (discriminant

validity). In line with this idea, recent studies reported better accura-

cies for predicting general cognitive ability (Sripada et al., 2020) and

fluid intelligence (Gao et al., 2019) from FC during task states involv-

ing executive functions (“same-domain”), as compared to prediction

from unrelated task or resting states (“other-domain”). This improve-

ment was particularly pronounced when FC data of the cognitively

demanding WM task was used, as compared to task states from other

domains (although the authors did not test for the statistical signifi-

cance of the observed numerical differences between prediction accu-

racies). These examples suggest the possibility of state specificity

when predicting behavior from corresponding FC patterns.

While most studies predicted task performance from states of the

same domain (i.e., prediction of intelligence from FC of a WM task

state), others predicted task performance from FC observed during

the exact same task. Avery et al. (2020), for example, predicted indi-

vidual performance accuracy in an n-back WM task based on FC

derived from fMRI data obtained while the n-back task was per-

formed, which showed an increase in accuracy when using this task's

fMRI data, as compared to rest data (Avery et al., 2020). Building on

this, Stark and colleagues investigated the difference in prediction

accuracy between predictions of performance in different working

and episodic memory tasks from FC obtained while performing an

n-back WM task. Importantly, the highest prediction accuracy

(r = .36) was achieved when n-back task performance was predicted

using FC during the very same task (i.e., n-back performance mea-

sured in the MR scanner), followed by the prediction of performance

in a different WM task (list sorting; r = .24), followed by predictions
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of episodic memory performance scores (r = .05–.11) (Stark

et al., 2021). These results suggest a specificity benefit of the state

used for calculating FC, which goes beyond the prediction of ability in

a given broadly defined cognitive domain (i.e., WM) and narrows it

down to specific tasks (i.e., n-back versus list sorting). That is, beyond

the effect of state specificity (i.e., domain congruence benefits for pre-

diction accuracy), a state–target similarity effect (i.e., task congruence

benefits for prediction accuracy) should manifest in even better pre-

diction accuracies for the performance in tasks during which FC data

were acquired, as compared to the performance in other tasks of the

same domain.

The literature to date is inconclusive regarding the effects of state

specificity and state–target similarity on FC-based predictions of men-

tal abilities and psychological traits. In particular, the majority of stud-

ies investigating such prediction models have focused on cognitive

targets such as intelligence or attention (Yeung et al., 2022). Thus,

clear evidence for state specificity and state–target similarity is still

lacking, especially in domains like emotion processing and social

cognition.

The studies above mainly used whole-brain FC for behavior pre-

diction. Sometimes, post hoc examination of the most predictive fea-

tures from the whole-brain feature space are used for better

interpretability (e.g., Chén et al., 2019; Dubois, Galdi, Paul, &

Adolphs, 2018; Itahashi et al., 2021; Jiang et al., 2020; Pläschke

et al., 2020). However, such post hoc analyses come with their own

limitations, as feature weights are context-dependent, their reliability

is rather low, and the results can be highly specific to the given

dataset (Tian & Zalesky, 2021). Besides predicting behavior from

whole-brain FC, several studies reported on predictions using particu-

lar functional networks as priors (J. Chen et al., 2021; Heckner

et al., 2023; Nostro et al., 2018). That is, prediction models in these

investigations exclusively rely on FC between regions that show acti-

vation during a given task. It is argued that this aides and constrains

the functional interpretability of any observed associations (e.g., most

predictive features), since such models are based on brain regions for

which the association between brain and mental function has already

been established independently.

Therefore, network-based prediction has the advantage of better

interpretability of the results due to the a priori knowledge about the

mental function a given network subserves (Nostro et al., 2018;

Pläschke et al., 2017). Similar to state specificity, FC within networks

associated with functions that are more closely related to the target

behavior (e.g., predicting WM performance from WM network fea-

tures) should also be more informative than networks that are associ-

ated with very different functions (e.g., predicting WM performance

from pain network features). Few studies have investigated this net-

work specificity, with some suggesting some network specificity with

regard to personality (Nostro et al., 2018), but others showing a lack

of specificity (Heckner et al., 2023; Pläschke et al., 2020).

The current project, therefore, aimed to investigate the influence

of brain state (same- vs. other-domain), similarity of target behavior to

the features within one domain (same vs. similar task from same

domain), and functional network priors (same- vs. other-domain

network) on the predictability of individual behavior. This included the

specific question of whether FC from same-domain states and in

same-domain networks can predict individual behavior better than FC

from other-domain states or networks. Hence, we tested the follow-

ing three hypotheses: (1) State specificity: behavior should be better

predicted based on FC patterns observed in the same domain, hence

during the state corresponding to the behavior to be predicted, as

compared to FC patterns observed in other (non-corresponding)

domains. (2) State–target similarity: task performance should be better

predicted based on FC patterns observed during the exact same task,

as compared to another similar task from the same domain. (3) Net-

work specificity: behavior should be better predicted based on FC

patterns observed in the networks corresponding to the predicted

behavior, as compared to FC patterns in other (non-corresponding)

networks.

2 | METHODS

To investigate whether there is state specificity, state–target similarity

and/or network specificity in brain–behavior prediction, we used the

Human Connectome Project (HCP) Young Adult dataset. We divided

it into two samples: in the first sample, we defined networks, and in

the second sample, we computed FC in predefined networks from the

first sample during different task states. Using FC within each network

as features, we predicted six different target variables, matching the

selected states and networks. We included the following three pheno-

typic domains: WM, theory of mind/social cognition (SOCIAL), and

emotion processing (EMO).

2.1 | Samples

Data were obtained from the Young Adult S1200 release of the

publicly available database provided by the HCP (Van Essen

et al., 2013), which comprised data from 1206 healthy individuals.

We only included participants for whom all the data required for

our analyses were available. That is, (a) all four resting-state fMRI

scans; (b) fMRI data of the WM, SOCIAL, and EMO tasks; and

(c) the performance measures (accuracy and reaction time) of these

three tasks performed in the scanner, as well as (d) all the perfor-

mance measures we aimed to predict for tasks that were performed

outside the scanner for each domain. Hence, every subject was

required to have both (in-scanner and out-of-scanner) tasks per

domain (three domains, six tasks in total). Of the 1206 individuals,

180 participants were excluded due to missing imaging data and

71 due to data quality issues. We further excluded subjects with

accuracy below 50% in the six tasks of interest (n = 77). Perfor-

mance accuracy was measured as the percentage of correct trials.

We chose to include only subjects producing more than 50% correct

trials, to ensure that only participants were included who were

attentive during the task and hence present the given states we

aimed to investigate. From the remaining sample of 878 subjects,
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two nonoverlapping subsamples were randomly generated: one for

independently delineating task-based networks via general linear

modeling (GLM; sample 1) and one for brain–behavior prediction

within those (and other) networks (sample 2). Thus, the first sample

can be thought of as the sample for “network extraction” and the

second sample for “feature extraction and prediction.” We carefully

accounted for the family structure and resulting dependencies in

this dataset by ensuring that (i) sample 1 contained only one individ-

ual per family, (ii) there was no kinship between the two samples,

and (iii) a leave-n-family-out cross-validation (CV) scheme for pre-

diction analyses within sample 2 was used (Poldrack et al., 2020).

For an overview of the sample selection, see Figure 1.

Sample 1, used for delineating task networks, consisted of

250 unrelated subjects (138 females; age mean = 28.6 years, stan-

dard deviation [SD] = 3.8, range = 22–36 years). Sample 2, used for

prediction, consisted of all the remaining individuals with no siblings

in the first sample. Further, we removed individuals that scored

higher/lower than 4 SDs from the mean in any of the six target scores

of interest, leaving us with 467 participants (252 females, mean

age = 28.8 years, SD = 3.7, range = 22–36 years) for sample 2. Note

that this sample contains siblings, which was accounted for in the pre-

diction pipeline through family subsampling in the CV (Poldrack

et al., 2020). From sample 2 we further randomly selected a holdout

sample (47 subjects), which was not used in any of the CVs. There-

fore, sample 2 consisted of 420 individuals that were used for CV and

final training, while n = 47 participants were held back for subse-

quently testing generalizability.

The analyses of the HCP data were approved by the ethics com-

mittee of the Medical Faculty at the Heinrich Heine University

Düsseldorf.

2.2 | Network delineation

Two different approaches were employed for delineating task-specific

networks: (i) networks reflecting brain activation in a large sample of

participants during the tasks of interest using the task fMRI data

of sample 1, and (ii) activation likelihood estimation (ALE) meta-

analyses across previously published neuroimaging results of the same

tasks. For brevity, we here only report the methods and results of the

first approach to network delineation. Further details on the results of

the second, meta-analytic, approach can be found in the supplemen-

tary material.

2.2.1 | Delineation of task-networks in sample 1

Ultimately, our network extraction approach aimed to delineate net-

works that were as closely as possible related to the states we aimed

to predict in the second sample. For this, we included strictly only the

task of interest for network delineation in both approaches—the single

study and the meta-analyses. To cover a variety of domains, we chose

three very different tasks performed in the scanner: n-back for the

WM domain, emotion recognition/face processing for the EMO

domain, and social cognition/theory of mind for the SOCIAL domain.

For details on the tasks, see Barch et al. (2013). Briefly, an n-back task

was used for WM, presenting a sequence of different stimuli with the

instruction to either decide whether the current stimulus is the same

as the one used two trials ago (2-back) or to recognize a specific tar-

get (0-back). EMO was a face-matching task in which angry or fearful

faces had to be matched (EMO condition), in contrast to matching

shapes (neutral condition). In the SOCIAL task, animated moving

F IGURE 1 Overview of the sampling procedure.
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shapes were shown in either interacting or random manner and had

to be labeled subsequently as interacting or randomly moving.

For the delineation of the task-specific networks revealing nodes

that are activated in our task of interest, we used the minimally pre-

processed volumetric task fMRI data of participants of sample 1. The

preprocessing included artifact removal, motion correction, and regis-

tration to the MNI standard volume space. More details regarding the

preprocessing pipeline can be found in Glasser et al., 2013. The mini-

mally preprocessed data were input for the GLM, performed using

FSL (Version 5.0.9) (Jenkinson et al., 2012; Smith et al., 2004;

Woolrich et al., 2009). For the subject-level GLM we modified the

scripts provided by the HCP (Barch et al., 2013; https://github.com/

Washington-University/HCPpipelines), which are based on the FSL

FEAT module (Woolrich et al., 2001, 2004), for use of

volumetric data.

The subject-level GLM included for either run (two different

phase encoding directions) temporal high-pass filtering (200 s cutoff),

spatial smoothing (8 mm FWHM Gaussian kernel), and the GLM fit-

ting. The respective stimuli in each task were modeled as blocked pre-

dictors, temporal derivatives of each predictor, 6 movement

parameters and their derivatives as regressors of no interest. For each

task, linear contrasts between conditions were computed:

2-back > 0-back for WM; interaction > random for SOCIAL; and

faces > shapes for EMO, respectively. Data across both phase encod-

ing directions were then combined with a fixed-effects GLM analysis.

For the group-level GLM, we modified an FSL workflow devel-

oped by (Esteban et al., 2019), which estimated the group effects

using FSL FMRIB's Local Analysis of Mixed Effects by performing a

one-sample t test across subjects. Group-level activation maps were

thresholded at cluster-level p < .05 (FWE-corrected for multiple com-

parisons) with a cluster-forming threshold of p < .001. The resulting

activation maps can be seen in the Supplemental Figures S1–S3. From

these clusters, we extracted only the peak coordinates from gray mat-

ter with a minimum distance of 15 mm. This resulted in three net-

works: WM-NW, SOCIAL-NW, and EMO-NW. For an overview of

the workflow, please see Figure 2. For comparison with the task-

specific networks, we used FC between the Power nodes (Power

et al., 2011) as a functionally defined, spatially distributed, whole-

brain representation of the connectome. The Power nodes represent

a combination of resting-state FC ROIs and task-based meta-analytic

ROIs, yielding 264 nonoverlapping independent ROIs.

2.3 | Prediction in sample 2

2.3.1 | Targets: Behavioral measures

To assess state specificity and state–target similarity, we selected

behavioral performance during different tasks: First, we used perfor-

mance collected in the scanner for our three domains of interest

(WM, SOCIAL, EMO à “same task”/in-scanner task). Second, we

selected scores of tasks/questionnaires that measured behavior not

exactly in the same state but still in the same behavioral domains

(“similar task”/out-of-scanner task). The two levels of tasks (“same”
and “similar”) from the same domain enable us to advance insights

beyond state specificity, into state–target similarity.

For “same task” scores (in-scanner task), reaction time and accu-

racy of task performance were used. These two scores were com-

bined by calculating the Inverse Efficiency Score (IES; Townsend &

Ashby, 1983), which is defined as the mean response time across cor-

rect trials of the condition of interest divided by its accuracy. This was

employed to address the issue of ceiling effects in the accuracy

scores. Hence, for WM (subsequently called “n-back”), IES was calcu-

lated using mean response time and accuracy of the 2-back blocks.

For EMO, we used response time and accuracy in the face-block of

the emotional face-matching task (subsequently called “matching” or

“EMO matching”). For SOCIAL, since the accuracy in both interaction

and random trials involved theory-of-mind cognition (Castelli

et al., 2000), we averaged response time and accuracy of both interac-

tion and random trials before creating the IES (subsequently called

“Social Cognition”).
For “similar task” scores (out-of-scanner task or questionnaire

scores) in the WM domain, we selected the unadjusted list sorting

score from the NIH Toolbox List Sorting Working Memory Test (sub-

sequently called “List Sorting”). For SOCIAL, we computed a social

satisfaction compound score (Babakhanyan et al., 2018) across five

different scales (friendship, loneliness, emotional support, instrumen-

tal support, and perceived rejection) of the self-report Emotion Bat-

tery of the NIH Toolbox (Salsman et al., 2013) (subsequently called

“Social Satisfaction” or “Satisfaction”). For EMO, we computed the

IES using reaction time and accuracy of the Penn Emotion Recognition

Test (Gur et al., 2001, 2010) (subsequently called “Emotion Recogni-

tion” or “Recognition”). See supplementary Table S1 for an overview

of all targets included.

2.3.2 | Features: FC

Resting-state fMRI and the three sets of task fMRI data (WM,

SOCIAL, EMO) from sample 2 were used for calculating FC within

each network of interest (WM, SOCIAL, EMO, and Power). The net-

work extraction is explained in detail in the section “Delineation of

task-networks in Sample 1”; for an illustration of the methods applied,

please see Figure 2. For all four states we used all runs available (four

runs for REST and two runs each for the tasks) and their full duration

per run. MRI protocols of HCP were previously described in detail

(Glasser et al., 2013; Van Essen et al., 2013). For the task-fMRI data,

we used the minimally preprocessed version provided by the HCP,

which includes removal of spatial distortions, volume realignment, reg-

istration to the anatomical image, bias field reduction, normalization

to the global mean, and masking the data with the final brain mask

(Glasser et al., 2013). The approach to treat task fMRI comparable to

resting state fMRI data has been suggested by (Greene et al., 2020).

For the resting-state fMRI data, we used the ICA-FIX denoised data

provided by the HCP, which uses the minimally preprocessed fMRI

data (processed in the same way as task fMRI data) as input and

KRALJEVI�C ET AL. 5 of 19
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denoises it through classification of ICA components. This classifier

identifies “good” and “bad” components and automatically removes

artifactual or “bad” components. For further details, see Griffanti et al.

(2014), Salimi-Khorshidi et al. (2014), and Smith et al. (2013).

Additional processing as well as the FC analysis for both resting-

state and task-fMRI data were performed using SPM12 (www.fil.ion.

ucl.ac.uk/spm/software/spm12/) and MATLAB 2020a (The Math-

Works, Natick, MA). Nuisance regression was done to control for

mean white matter and cerebrospinal-fluid signals, mean global signal,

within-scanner motion using the 6 movement parameters and their

derivatives stored in the Movement_Regressors_dt.txt file provided

by the HCP. Further, we applied band-pass filtering [0.01–0.1 Hz] and

detrended the time series. We opted for the band-pass filter, as this

has been shown to be successful in filtering out movement and physi-

ological artifacts, without leading to information loss (Ciric

et al., 2017; Satterthwaite et al., 2013). Using the network coordinates

obtained from sample 1 (depicted in Figure 2 and in the supplemental

material in Figures S7–S13 and Tables S2–S7), for each network, we

F IGURE 2 Overview of the applied methods. Yellow blocks depict the network extraction from sample 1. Violet blocks depict the network-
based prediction in sample 2, together with the feature extraction (functional connectivities) from the networks delineated in the first step and
sample. The upper heatmap under “FC-Features” shows the FC from the different states in the WM-network. GLM: General linear modeling, PE:
Phase encoding; FC: Functional connectivity; Soc. Cog., Social cognition task (in-scanner task); Soc. Satisf., Social Satisfaction Questionnaire (out-
of-scanner score); Emo. Match., Emotional Face-Matching task (in-scanner task); Emo. Recog., Emotional Face Recognition task (out-of-scanner
score).
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modeled a 5-mm sphere around each node's coordinate. The sphere

size was the same for all coordinates to ensure the same number of

voxels within each node. However, as we extracted multiple peak

coordinates from larger clusters of task-activation in sample 1, larger

activated regions are represented by multiple spheres. From each

sphere, we extracted the mean time series. We then calculated the

Pearson's correlations between all pairs of nodes of each respective

network, before applying Fisher's Z-transformation. These steps were

done for each run separately (four runs for REST and two runs each

for the tasks) and for each state (REST, WM, SOCIAL, and EMO). The

z-scored FC values were finally averaged across all runs of each state.

This was done for all four networks as well as for each of the four

states. Connectivity matrices for the WM network can be seen in

Figure 2, all other networks averaged across all subjects can be found

in the supplemental material (Figures S14–S20).

To ensure that any effects were not due to the different lengths

of the tasks performed in the scanner, we trimmed all time series to

the length of the shortest scan duration (EMO: 2:16 min) for a control

analysis. These results are reported in the supplemental material

(Figure S22).

2.3.3 | Network-based prediction of individual
behavior

We predicted the task performance/characteristics for each domain

from resting- and task-state FC (four states: REST, WM, EMO,

SOCIAL; to investigate state specificity) and task of interest (same and

similar tasks in WM, EMO, SOCIAL; to further investigate state–target

similarity) of the delineated networks (four networks: whole-brain

Power nodes and three task networks [WM, SOCIAL, EMO from sam-

ple 1; to investigate network specificity]).

For the main analysis, we used partial least squares (PLS) as the

prediction model. PLS is a form of supervised learning which uses lin-

ear regression fitting, but it can handle violation of the assumption of

no multicollinearity by reducing the dimensionality of correlated vari-

ables. However, to confirm our results and to cover models that have

been used in the past for behavioral prediction, we additionally per-

formed analyses using other algorithms: Kernel ridge regression,

which, like PLS, is a linear parametric model. As well as support vector

regression (with both linear and nonlinear RBF kernel) and random

forest as nonparametric models, where both can capture nonlinear

relationships. Finally, we used PLS and kernel ridge also with

connectivity-based prediction modeling (CBPM; Finn et al., 2015;

Shen et al., 2017) as a popular feature reduction. CBPM correlates the

features to the target variable, retaining only the features showing a

significant relation to the target for the model to learn. Note that all

models were trained using the same set of FC features and target var-

iables. All results from the additional analyses are presented in the

supplemental material (Figures S21–S28).

Separate prediction analyses were conducted for each combina-

tion of network, state, and behavioral score, resulting in a total of

4 states � 4 networks � 6 targets = 96 predictions. The FC pattern

of the respective network and state constituted the given feature

space, and the respective behavioral scores were the targets. All

algorithms were used as implemented in JuLearn (Hamdan

et al., 2023), which is a toolbox based on scikit-learn (Pedregosa

et al., 2011). It includes hyperparameter tuning, nested-CV, and fea-

ture reduction methods making sure that data leakage is avoided.

For PLS, we tuned the hyperparameters in an inner fivefold CV, with

the number of latent components increasing in steps from 1 to 10.

As having a sibling in the training set could lead to a better predic-

tion of the related participant's score in the validation set, we

applied a 100� leave-30%-families-out CV scheme on 420 subjects

from sample 2 to account for the family structure of the sample

(i.e., individuals from the same family were not split into training or

validation sample but kept in either one of them). This is done to

counter potential nonindependence induced by the family structure

in the HCP dataset (Poldrack et al., 2020). We deconfounded the

features by regressing out age and sex as well as normalizing them

by z-transformation. For comparability of prediction performance

between the different behavioral scores, we additionally normalized

the targets. To avoid data leakage, confound regression and normal-

ization were done within the CV. That is, the confound regression

models and parameters for z-transformation were computed in the

CV on the training set only (70% of the families) and then applied to

the test set (30% of the families) (Poldrack et al., 2020). Prediction

performance was evaluated by the root mean squared error (RMSE)

as well as the coefficient of determination (COD), as a measure of

goodness of model fit, averaged across all CV runs. Additionally, the

mean Pearson correlation across all CV runs between predicted and

observed scores was calculated. After hyperparameter tuning and

CV, we finally applied the model, that has been trained on all the

data provided and with the hyperparameter tuning performed on it,

to the randomly drawn holdout sample (47 subjects from sample 2)

to evaluate the model's generalizability.

The RMSE was used for testing for significant differences of pre-

diction performance between states, networks and, tasks using

machine-learning (ML)-adjusted t tests (Nadeau & Bengio, 1999).

These modified t tests are evaluated and adjusted for comparing ML

algorithms (Bouckaert & Frank, 2004) to account for violating the

independence assumption in a paired Student's t test. This is done by

correcting the variance estimate through considering the training and

sample size. In our case, due to the leave-30%-families-out CV

scheme, the number of data points changed in each fold. Therefore,

we used the mean training sample size across the 100 folds for the

adjustment.

Within each phenotypic domain, we first tested effects of state

and network by averaging prediction performance of the respective

other factors (i.e., averaging across networks and task when testing

for state effects, and across state and task when testing for network

effects). As state–target similarity is an extension of state specificity,

we here only averaged across networks for same and similar tasks,

respectively. Significant effects (Bonferroni corrected for multiple

comparisons) were then further assessed by comparing the respective

individual prediction scores between each other.
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F IGURE 3 Legend on next page.

8 of 19 KRALJEVI�C ET AL.

 10970193, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26753 by Forschungszentrum
 Jülich G

m
bH

 R
esearch C

enter, W
iley O

nline L
ibrary on [23/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 | RESULTS

In a first step (upper/yellow part of Figure 2), we compared the result-

ing task-networks from both sample 1 and the meta-analyses to

ensure they covered and showed overlap with frequently observed

regions in previously reported large-scale analyses (WM: Daamen

et al., 2015; Fuentes-Claramonte et al., 2019; Kennedy et al., 2017;

Rottschy et al., 2012; Snoek et al., 2021; https://identifiers.org/

neurovault.collection:7103; SOCIAL: T. Chen et al., 2023; Hennion

et al., 2016; Mossad et al., 2022; Patil et al., 2017; EMO: Chaudhary

et al., 2023; Herrmann et al., 2020; Nord et al., 2017; Snoek

et al., 2021; https://identifiers.org/neurovault.collection:7103). The

resulting WM-NW had 49 nodes, the SOCIAL-NW had 66 nodes, and

EMO-NW had 84 nodes. For an overview of the networks, please see

Figure 2. Please refer to the supplemental material for a comprehen-

sive depiction of the original activation maps resulting from the

group-level (Figures S1–S3) and the activation likelihood maps of

the meta-analyses (Figures S4–S6), extracted networks

(Figures S7–S13) and further details on the exact coordinates, includ-

ing the anatomical labels (supplemental Tables S2–S7).

Following this, we examined the FC of sample 2 within the net-

works derived from sample 1 for each individual state. Averaged

across all subjects, the pattern of FC of all networks looks similar

between different states. However, we see a tighter network coupling

within the WM-NW in the WM state, compared to the other states

(i.e., SOCIAL, EMO, and resting state; see Supplemental Figures S14

and S15). A tendency of higher FC within the congruent network was

also visible in the EMO domain (Supplemental Figures S18 and S19).

However, the picture was more fuzzy within the SOCIAL domain

(Supplemental Figures S16 and S17), where no apparent pattern was

discernable. This further motivated the next step—the application of

ML and its assessment—to investigate whether the algorithms would

be able to pick up complex and subtle signal that we were unable to

observe within the averaged FC matrices.

The main focus of this study, therefore, lies on the prediction ana-

lyses (bottom/violet part of Figure 2). We mainly report on the out-

comes of the prediction analyses using PLS. Predictions using

different algorithms and approaches showed highly similar patterns

and their details can be found in the supplementary material. Further-

more, regarding outcome measures, we here focus on the RMSE from

the CV as well as the COD as a measure of goodness of fit. In the sup-

plementary material, additional results of Pearson's r of the predicted

and observed score from the CV can be found.

Averaged across all CV-folds per prediction, the COD and RMSE

(Figure 3) revealed that the models show a poor fit and prediction accura-

cies are rather low. Note, that COD values below zero indicate that

prediction of individual scores were worse than predicting the mean of

the target. The mean COD showed a positive mean value only for 2 out

of 96 predictions, while all others showed a mean COD of zero or a nega-

tive value. Other models (e.g., kernel ridge regression or SVR) yielded

some more COD values above zero, but no model achieved a mean COD

higher than 0.07. Similarly, the RMSE was quite high for all predictions.

Because these scores indicated a generally poor fit to the data, we

refrained from applying the best model to the holdout sample. The corre-

lations (for details, see the supplementary material) between predicted

and observed values ranged from �0.11 to 0.32 with a mean prediction

accuracy of 0.08 (SD: 0.09) and only one mean correlation from the

96 predictions reaching a medium effect size.

3.1 | State specificity in network-based prediction

To answer the question if the correspondence between state and tar-

get (e.g., WM score predicted using FC during WM state) improves

predictions, and whether there even is state specificity (e.g., WM

scores predicted significantly better from FC during WM state than

from FC during other states: REST, SOCIAL, or EMO), we examined

the differences in prediction accuracy between states.

No significant differences were found for the SOCIAL and EMO

domain (Figure 4b,c). For the WM domain, the ML-adjusted t test

(Bonferroni corrected for multiple comparisons) showed a significant

benefit for all task states compared to the resting state (see Figure 4a;

see Table 1 for mean RMSE and significant t test statistics). However,

non-WM domain states (i.e., SOCIAL and EMO) only showed a signifi-

cant difference to the WM state at an uncorrected threshold (not

shown in Table 1). This difference was also significant when using

other algorithms and feature selection approaches (PLS with CBPM,

random forest, and SVR with the RBF kernel). At an uncorrected

threshold, the difference was also significant for all other models (ker-

nel ridge regression, SVR with linear kernel, and CBPM with ridge

regression), as well as when using only the trimmed time-series.

To asses which effect was driving the significant differences, we

compared prediction performance between states using post hoc ML-

adjusted t tests, while keeping network and task constant. That is, we

only compared predictions between same-domain networks and tasks

(e.g., comparing the prediction performance of “same” WM task score

based on FC between Power nodes in resting state to the prediction

performance of “same” WM task score based on FC between Power

nodes in WM state). Comparing prediction performance between rest

and different states for each network and WM score revealed that

the difference between REST and WM state was driven by the differ-

ence in prediction performance of the n-back task using the Power

F IGURE 3 Prediction performance: Boxplots of the distribution of COD and RMSE from the 100� CV for each phenotypic domain (a—WM,
b—Social, c—EMO domain), state and network. Boxes represent the model fit/COD and RMSE of prediction of a specific score (WM, SOCIAL,
EMO; performed in [darker background] or outside [lighter background] the scanner) based on functional connectivity within a given network
(POWER, WM, SOCIAL, EMO) in a given state (REST, WM, SOCIAL, EMO). Green: WM, blue: SOCIAL, red: EMOTION, yellow: resting state,
white: Power nodes. Darker background: target is the task performed in the scanner; lighter background: target is the task performed outside the
scanner. Soc. Cog., Social cognition task (in-scanner task); Soc. Satisf., Social Satisfaction Questionnaire (out-of-scanner score); Matching:
Emotional Face-Matching task (in-scanner task); Recognition: Emotional Face Recognition task (out-of-scanner score).

KRALJEVI�C ET AL. 9 of 19

 10970193, 2024, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26753 by Forschungszentrum
 Jülich G

m
bH

 R
esearch C

enter, W
iley O

nline L
ibrary on [23/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://identifiers.org/neurovault.collection:7103
https://identifiers.org/neurovault.collection:7103
https://identifiers.org/neurovault.collection:7103


nodes and the EMO network (for mean RMSE and significant t test

statistics, see Table 1). The EMO network additionally showed a dif-

ference between WM and REST state when predicting list sorting.

The difference between REST and EMO state was also driven by

Power nodes and the EMO network when predicting n-back perfor-

mance, and by the EMO network when predicting list sorting. The sig-

nificant difference in REST versus SOCIAL was driven by the Power

nodes in predicting n-back performance.

Overall, state had a significant influence on predicting WM

scores, with better predictions when using task compared to resting

state. This state-specific improvement was, however, not uniformly

observed and mainly driven by predictions based on FC within the

Power nodes and the EMO network.

3.2 | State–target similarity in network-based
prediction

In a next step, we examined differences in predictability between the

“same” and “similar” tasks in a given domain. We were interested in

whether the behavior would be predicted better in the state where

the predicted behavior was measured (“same task”), and whether the

FC-based predictivity could translate to a related task (“similar task”).
An example would be the comparison between the predictability of

n-back task performance (WM task performed during scanning) and

the list sorting task (WM task performed outside of the scanner)

based on FC patterns observed during the WM n-back task.

For this comparison of “same task” with “similar task,” we found

a slight (numerical) benefit in the performance of the “same task.”
However, a direct statistical comparison of RMSE values using ML-

adjusted t tests did not show any significant effects after Bonferroni

correction for multiple comparisons (see Figure 5).

3.3 | Network specificity in network-based
prediction

Finally, we set out to answer the question if predicting task perfor-

mance does benefit from being based on FC within a network known

to be engaged in performing that same task (e.g., n-back task perfor-

mance predicted from FC within the WM-network), as compared to

other task-related networks (e.g., n-back task performance predicted

F IGURE 4 State and network specificity: State (a–c) and network (d–e) specificity for each phenotypic domain (a and d—prediction of WM

scores, b and e—prediction of SOCIAL scores, c and f—prediction of EMO scores). For state specificity, (a–c) RMSE of all networks (POWER, WM,
SOCIAL, EMO) and the two tasks of the respective domain in a given state (REST, WM, SOCIAL, EMO) are averaged. For network specificity, all
states (REST, WM, SOCIAL, EMO) and the two task of the respective domain are averaged in a given network (Power nodes, WM, SOCIAL,
EMO). Green: WM, blue: SOCIAL, red: EMOTION, yellow: resting state. Horizontal bars indicate significance pcorr <.05.
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from FC within a SOCIAL task-based network or the whole-brain con-

nectome). ML-adjusted t tests showed, for all three domains, a benefit

for the whole-brain Power nodes over the task-specific networks (see

Figure 4d–f). In the WM domain, FC between the Power nodes pre-

dicted WM-related targets better than did FC within the n-back WM-

specific network, the SOCIAL-specific network, or the EMO-specific

network (see Figure 4d and Table 2 for mean RMSE and t test statis-

tics). In the SOCIAL domain, the Power nodes predicted SOCIAL-

related targets better than did the WM-specific, SOCIAL-specific, or

EMO-specific networks (see Figure 4e). Finally, in the EMO domain,

the Power nodes again predicted EMO-related targets better than all

three domain-specific networks including the EMO-specific network

derived from an emotional face-matching task (see Figure 4f).

Post hoc tests (see Table 2) indicated that the difference between

the Power and WM networks was driven by the EMO and WM state

when predicting social satisfaction, while there was no specific

state or task driving the effects for the EMO and WM domain. The

priority of Power over the SOCIAL-specific network was in particular

evident when predicting social cognition and social satisfaction in the

EMO state and when predicting emotion recognition in the REST,

SOCIAL, and EMO states. No specific state or task was driving the

effect for the WM domain. The effect of Power versus the

EMO-specific network was driven by the predictions of list sorting

and emotion recognition in the REST state. No specific state or task

was driving the effect in the SOCIAL domain.

TABLE 1 Comparison of prediction accuracies between states.

Domain of predicted

performance State A

RMSE

mean (SD) State B

RMSE

mean (SD) t

p-

Value

Significant main effect of state

WM REST 1.10 (0.06) WM 1.02 (0.05) 5.10 <.001

REST 1.10 (0.06) SOCIAL 1.05 (0.06) 3.49 .013

REST 1.10 (0.06) EMOTION 1.05 (0.06) 3.68 .007

Significant post hoc tests for specific state—task—network combinations

WM REST (n-back, Power nodes) 1.06 (0.09) WM (n-back, Power nodes) 0.95 (0.09) 4.83 <.001

REST (n-back, EMO

network)

1.13 (0.10) WM (n-back, EMO network) 1.00 (0.10) 3.51 .016

REST (List Sorting, EMO

network)

1.19 (0.09) WM (List Sorting, EMO

network)

1.05 (0.09) 4.10 .002

REST (n-back task, Power

nodes)

1.06 (0.09) SOCIAL (n-back task, Power

nodes)

0.98 (0.09) 3.21 .043

REST (n-back task, Power

nodes)

1.06 (0.09) EMOTION (n-back task, Power

nodes)

0.97 (0.09) 3.72 .008

REST (n-back, EMO

network)

1.13 (0.10) EMOTION (n-back, EMO

network)

1.00 (0.10) 3.40 .023

REST (List Sorting, EMO

network)

1.19 (0.09) EMOTION (List Sorting, EMO

network)

1.10 (0.09) 3.32 .030

Note: Machine-learning-adjusted t test to assess state specificity using the averaged 100 RMSE values obtained from 100-fold cross-validation within the

state listed in column “State A” versus the state listed in column “State B.” p-Values are Bonferroni corrected for multiple comparisons. Post hoc t tests

between individual predictions of the task in the network (both noted in brackets) and the state listed in column “State A” versus the state listed in column

“State B.”

F IGURE 5 State–target similarity: Boxplots of the distribution of
RMSE from the 100� CV averaged across all networks (Power nodes,
WM, SOCIAL, EMO network) within a given state (WM, SOCIAL, and
EMO) and task (SAME or SIMILAR). Green: WM, blue: SOCIAL, red:
EMOTION, gray: averaged across networks. Darker background:
target is the “same” task performed in the scanner, lighter
background: target is the “similar” task performed outside the
scanner.
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This superiority of the Power nodes over functional network

definitions in all three domains was not present in other ML algo-

rithms. However, we still saw a similar trend when trimming the

time series to the shortest task (EMO: 2:16 min), as the Power

nodes performed better in all domains and networks, except for the

EMO domain where the EMO network did not perform significantly

worse.

4 | DISCUSSION

Using state-of-the-art fMRI preprocessing and ML approaches, this

study investigated brain–behavior relationships. Specifically, how

brain features from specific states and networks, or the task similarity

within the behavioral domain, affects this relationship. Based on

previous studies, we hypothesized that brain features obtained from

networks and/or states that are corresponding to the target task are

more informative about individual behavior than those obtained from

other (non-corresponding) states or networks. Additionally, we

expected that behavior in the task performed during fMRI data acqui-

sition will be predicted better than similar tasks of the same pheno-

typic domain. Contrary to expectations, we found no significant

differences in predictability (when correcting for multiple compari-

sons) that would indicate specific benefits of state, task, or network

correspondence. Rather, our results show a general benefit of predict-

ing WM scores using (any) task state, relative to rest, and for predict-

ing performance in any domain from whole-brain FC (Power nodes),

relative to predefined functional networks. Importantly, however, pre-

diction accuracies were overall quite low, raising the question to what

extent the observed differences (or their absence) in prediction

TABLE 2 Comparison of prediction accuracies between networks.

Domain of predicted

performance Network A

RMSE

mean (SD) Network B

RMSE

mean (SD) t

p-

Value

Significant main effect of network

WM Power nodes 1.02 (0.06) WM 1.06 (0.06) �3.30 .025

SOCIAL 1.08 (0.06) �4.65 <.001

EMO 1.08 (0.06) �6.03 <.001

SOCIAL Power nodes 1.04 (0.07) WM 1.11 (0.06) �6.37 <.001

SOCIAL 1.11 (0.06) �5.72 <.001

EMO 1.08 (0.07) �4.43 <.001

EMO Power nodes 1.01 (0.06) WM 1.07 (0.07) �5.05 <.001

SOCIAL 1.09 (0.06) �7.10 <.001

EMO 1.05 (0.06) �3.93 .003

Significant post hoc tests for specific network—task—state combinations

WM Power (List Sorting, REST

state)

1.07 (0.09) EMO (List Sorting, REST state) 1.19 (0.09) �4.41 .002

SOCIAL Power (Soc. Cog., EMO state) 1.02 (0.11) SOCIAL (Soc. Cog., EMO

state)

1.14 (0.11) �4.80 <.001

Power (Soc. Satisf., EMO

state)

1.01 (0.08) WM (Soc. Satisf., EMO state) 1.11 (0.08) �3.82 .017

Power (Soc. Satisf., WM state) 1.04 (0.08) WM (Soc. Satisf., WM state) 1.15 (0.08) �3.68 .027

EMO Power (Emo. Recog., REST

state)

1.00 (0.09) SOCIAL (Emo. Recog., REST

state)

1.13 (0.10) �4.05 .008

EMO (Emo. Recog., REST

state)

1.11 (0.09) �4.39 .002

Power (Emo. Recog., WM

state)

0.99 (0.09) SOCIAL (Emo. Recog., WM

state)

1.13 (0.10) �5.18 <.001

Power (Emo. Recog., SOCIAL

state)

1.00 (0.09) SOCIAL (Emo. Recog.,

SOCIAL state)

1.11 (0.09) �4.47 .002

Power (Emo. Recog., EMO

state)

1.01 (0.09) SOCIAL (Emo. Recog., EMO

state)

1.12 (0.09) �4.47 .002

Note: Machine-learning-adjusted t tests to assess network specificity using the averaged 100 RMSE values obtained from 100-fold cross-validation within

the network listed in column “Network A” versus the network listed in column “Network B.” p-Values are Bonferroni corrected for multiple comparisons.

Post hoc t tests between individual predictions of the task in the state (both noted in brackets) and the network listed in column “Network A” versus the
state listed in column “Network B.”
Abbreviations: Emo. Recog., Emotional Face Recognition task (out-of-scanner score).; Soc. Cog., Social cognition task (in-scanner task); Soc. Satisf., Social

Satisfaction Questionnaire (out-of-scanner score).
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performance between state and network conditions, and task similar-

ity can be meaningfully interpreted.

4.1 | Is there state specificity for brain–behavior
prediction?

We expected not only an improvement in predicting behavior based

on FC during task states compared to FC at rest as demonstrated by

(Greene et al., 2018), but especially in predicting behavior based on

FC within corresponding states. However, apart from the overall low

prediction performance, our results, show only weak evidence for the

former, that is, an advantage of task states compared to resting state,

but only for predicting WM scores (see Figure 4a). Previous studies

have already reported that predictions of cognitive scores such as

intelligence or attention improve when using task fMRI data

(vs. resting state) to derive FC patterns (Avery et al., 2020; Greene

et al., 2018; Jiang et al., 2020). But also when combining task and rest

(Jiang et al., 2020), and specifically when using FC within a WM task

state (Avery et al., 2020; Jiang et al., 2020; Sripada et al., 2020; Stark

et al., 2021). Our results extend this work to different states and addi-

tionally show that this benefit of using task-fMRI data cannot be

assumed for behaviors other than WM. Task-fMRI data may lead to

better predictions compared to resting-state data, particularly for WM

performance, possibly because task-based fMRI has a more con-

strained setup which potentially enhances reliability. Resting-state

fMRI has been shown to be less reliable than stimulating (such as

movies or task) fMRI (Noble et al., 2019). Task-based modulations of

brain states may therefore contain more information about individual

differences in brain functioning and behavior (Greene et al., 2018).

This is consistent with a recent emphasis on shifting from solely

focusing on resting-state FC (Finn, 2021; Greene et al., 2018) to accel-

erate progress in human neuroscience. Possibly, predictive perfor-

mance can be improved by using naturalistic stimuli (Finn &

Bandettini, 2021), as such settings are still more constrained than rest

but less constrained than certain laboratory tasks. However, using

movie data would not readily allow testing of state specificity effects,

and therefore would not be a ready-made solution to the current

research question.

4.2 | Is there state–target similarity?

Surprisingly, prediction accuracy was low even when FC was derived

from the exact same task state in which the behavioral data were col-

lected, with no improvement when predicting the same score, as com-

pared to a similar score (see Figure 5). Also using the HCP dataset and

WM task data, Stark et al. (2021) reported similar though slightly

higher accuracies than ours for n-back (“same task”) and list-sorting

(“similar task”) scores, with higher correlations for the former (but not

tested for significance). We here extend these insights by also testing

effects of task similarity for SOCIAL and EMO scores and by showing

that although n-back WM performance seems to be predicted better,

the difference between “same task” and “similar task” score predic-

tion is not significant.

A possible reason for the lack of support of our hypothesis might

lie in the nature of the task used in the scanner. That is, a lot of para-

digms were developed in experimental contexts (Hedge et al., 2018)

and therefore optimized for inducing a robust effect across partici-

pants instead of assessing interindividual differences. This might espe-

cially be the case for experimental tasks used in the scanner. For

example, the emotional face-matching task (Hariri et al., 2002) used

for EMO assessment was developed to induce robust amygdala acti-

vation, rather than capturing individual emotion processing abilities.

Additionally, the tasks used here were rather short and may have

lacked enough difficult items for a clearer differentiation between par-

ticipants. The n-back task, for example, most strongly differentiates

between individuals when using high-load conditions (>3-back), both

in terms of behavior and brain activity (Lamichhane et al., 2020).

Therefore, using behavioral measurements from tasks optimized for

obtaining stable group-average effects might have counteracted the

successful prediction of interindividual differences.

4.3 | Is there network specificity for brain–
behavior predictions?

We based the network specificity hypothesis on the assumption that

if networks are reliably engaged during a task, then these networks

should play an important role in the task outcome (i.e., specific perfor-

mance). Importantly, our aim to demonstrate network specificity was

based on the idea that a priori task-defined networks improve inter-

pretability (Bzdok et al., 2012; Langner et al., 2018; Müller

et al., 2018; Rottschy et al., 2012) as they reflect interactions between

regions that are jointly engaged during a specific task and should

therefore be biologically meaningful (J. Chen et al., 2021; Nostro

et al., 2018; Pläschke et al., 2017). Further, visual inspection of FC

within task networks and states averaged across subjects (see supple-

mental Figures S14–S20) revealed the expected stronger FC within

the congruent networks and states, respectively. This was most

strongly expressed in WM and EMO, whereas in SOCIAL no clear pat-

tern was visible. Yet, this apparently tighter coupling of congruent

networks did not provide enough information for the prediction of

individual behavior to translate into a significant improvement.

Nonetheless, our results showed that prediction performance

was weak regardless of the networks used (see Figure 3—COD). Com-

parison of the differences between networks showed that prediction

from the whole-brain representation (Power et al., 2011) significantly

improved prediction compared to the task specific networks (see

Figure 4d–f). The reason for an advantage of the whole-brain connec-

tome remains to be revealed. We assume that some subtle pieces of

information in the whole-brain connectome, which are not captured

by the task networks, reflect individual processing differences in some

parts of the tasks at hand and thus contribute to some extent to

behavior prediction. Additionally, the whole-brain connectome has

considerably more nodes than the task networks studied here, giving
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the model much more features to learn from. These nodes can poten-

tially capture interactions and integration of multiple brain regions,

including regions, that are not consistently involved in the investi-

gated mental processes and do not translate into group-level average

task networks. However, despite the whole-brain Power nodes per-

forming, on average, significantly better than the task networks, they

were not consistently superior (see Supplemental Figure S29 showing

the prediction performance sorted by network size).

Nevertheless, our results suggest that there is no network speci-

ficity, which is in line with the findings of Heckner et al., 2023 and

Pläschke et al., 2017, 2020. Using networks based on group analyses

may therefore not be a suitable avenue for assessing individual differ-

ences (Finn et al., 2017; O'Connor et al., 2017; Shah et al., 2016).

Brain mapping results from group analyses typically reveal regions

with low inter-subject variability (Hedge et al., 2018), and group-

averaged patterns of brain activation often look quite different from

patterns observed on the individual subject level (Miller et al., 2002).

In addition, it has been shown that brain regions, for which activation

has been found to be associated with behavioral outcomes, are not

necessarily those that show up in standard group-average analyses

(Ganis et al., 2005). Our results now indicate that this might also apply

to networks derived from large samples that also reflect small average

effects (HCP-derived networks) or from large-scale meta-analyses.

However, improvement may be gained through an individualization of

the networks prior to prediction. For example, Kong and colleagues

employed a multi-session hierarchical Bayesian model to estimate

individual-specific cortical network parcellations, significantly improv-

ing prediction performance relative to other parcellations (Kong

et al., 2019). Similarly, using a different approach (Li et al., 2019) dem-

onstrated an improvement in prediction accuracy using an iterative

search based on a population-based functional atlas in combination

with a map of inter-individual variability (D. Wang et al., 2015).

4.4 | Methodological considerations

In this study, we aimed to predict complex behavior based on

FC. Generally, our prediction accuracies were rather low. Neverthe-

less, they are comparable to the accuracies (correlation between pre-

dicted and observed score) reported in the literature (Dubois, Galdi,

Han, et al., 2018; Greene et al., 2018; Heckner et al., 2023; Kandaleft

et al., 2022; Ooi et al., 2022; Tomasi & Volkow, 2020). However, using

correlation alone as a measure for prediction accuracy can skew the

picture. All measures individually (correlation, COD, RMSE) have been

shown to have their drawbacks and therefore it has been suggested

that they should be considered together as a whole (Poldrack

et al., 2020). Our results emphasize the importance of using more than

one measure and especially using more than Pearson's r as a measure

for prediction performance, as this metric, when used in isolation, may

draw an overly optimistic picture. As illustrated in our plots (see sup-

plementary material), Pearson's r invites the observer to interpret

some apparent patterns. Yet, when looking at the model fit given by

COD values, it can be easily seen that most models barely fit the data

(see e.g. Figure 3). Surprisingly, only few prediction studies in the neu-

roimaging literature have reported metrics other than r. However, if

they did, results were rather similar to ours, with finding only small

amounts of variance explained (COD) and reporting high prediction

errors on average (Dubois, Galdi, Han, et al., 2018; Kandaleft

et al., 2022; Ooi et al., 2022).

There may be several reasons why we did not successfully predict

behavioral performance. One is predicting behavioral scores of single

tasks or questionnaires, like WM, as opposed to compound scores

across many tests, like overall cognition (Akshoomoff et al., 2013;

Dubois, Galdi, Paul, & Adolphs, 2018). Studies using compound scores

generally report better accuracies (McCormick et al., 2022; Ooi

et al., 2022), as they may capture individual abilities better and show

higher reliabilities compared to individual test scores (Hedge

et al., 2018). However, the interpretation and biological foundation of

compound scores is debatable (Dubois, Galdi, Paul, & Adolphs, 2018;

McFarland, 2012; Van Der Maas et al., 2006). In this study, we aimed

to investigate specificity, and hence we focused on individual tasks or

questionnaires at the cost of a potential decrease in prediction

performance.

Another reason for the low prediction performance, related to

the first explanation, might be the reliability of the predicted measures

but also the features, setting an upper bound for detecting relation-

ships (Cohen et al., 2013; Vul et al., 2009; Yarkoni & Braver, 2010).

Using the HCP test–retest sample calculation of the correlations

between measurement time points 1 and 2 (test–retest reliability) of

the scores we used revealed reliabilities between 0.5 and 0.8, with

highest reliabilities for the WM domain. In our and other studies, WM

or intelligence scores were generally predicted better than other cog-

nitive measures (Avery et al., 2020; Kandaleft et al., 2022; Ooi

et al., 2022; Sripada et al., 2020; Takeuchi et al., 2021), which could

be because these constructs are measured more accurately than

others.

Finally, for ML applications in CV schemes, sample size is an

important factor for achieving good prediction performance. The more

data is available, the better a model can learn. In our case, our sample

size decreased due to our carving out a subsample for a priori network

delineation, leaving us with 420 subjects in the training set. This step

was essential to assess network specificity using networks as close as

possible to the investigated tasks. Other studies using the HCP data-

set and similar algorithms have in part achieved slightly better predic-

tions, possibly through larger training sets (Jiang et al., 2020; Ooi

et al., 2022). The effects we sought to detect are presumably very

small; hence, a substantially larger dataset and/or more reliable behav-

ioral assessments could be required to detect them (Marek

et al., 2022).

4.5 | Limitations and outlook

We are aware that there is a plethora of preprocessing pipelines and

feature selection models that may improve prediction. We used a

well-established preprocessing pipeline (Glasser et al., 2016) and
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widely used ML models that previously yielded the highest predictions

(Greene et al., 2018; Jiang et al., 2020; Yeung et al., 2022). Given that

we saw a similar pattern of prediction accuracies irrespective of the

model used, we would not expect a substantial change of the result

pattern if other models were used.

Further, we aimed to cover a broad range of task network repre-

sentations by (i) extracting networks from a high-powered single

study using task fMRI data, (ii) using ALE meta-analyses based on pre-

viously published neuroimaging results (see supplemental material), as

well as (iii) including a whole-brain representation (Power et al., 2011)

for comparison with the task networks. We acknowledge that differ-

ent whole-brain representations, such as the parcellation by Schaefer

et al. (2018) could yield different and possibly even better prediction

accuracies. Also, the inclusion of data-driven approaches to network

definition, like principle component analysis or group independent

component analysis, could lead to different results. Testing the influ-

ence of such methodological choices is an important research topic

and should be addressed more systematically in future studies. Until

then, our results should only be generalized to settings that employ

the same or similar methods as were used here. We here, hence, lim-

ited our analyses to one whole-brain representation, as our focus was

on task networks and their interpretability. This also entails using the

task-specific networks in their most accurate representation, encom-

passing their unique spatial distributions as well as their different

sizes. We believe that both aspects constitute fundamental inherent

characteristics of networks.

Finally, the HCP dataset comprises young and healthy adults, with

an above-population average intelligence. As the majority of subjects

in the HCP dataset were highly educated, performed generally well on

the tests, and as tests are optimized for group effects, the between-

subject variability in this dataset is relatively limited, that is, subopti-

mal for approaches relying on individual differences. Nevertheless,

the HCP currently offers the only dataset that allows for the investi-

gation of such complex research questions as state specificity, state–

target similarity, and network specificity in brain-based prediction set-

tings, because it covers a vast array of phenotypic domains, both in

and outside the scanner, while providing high-quality fMRI data

in task and resting states in a large number of participants.

4.6 | Conclusions

Here, using state-of-the-art ML algorithms for out-of-sample predic-

tion analyses, we aimed to investigate the specific influence of the

factors state, task, and network on behavior prediction from FC pat-

terns. Based on previous research on brain–behavior relationships, we

hypothesized that FC features from corresponding state, tasks, and

networks would be more informative than non-corresponding fea-

tures and hence improve prediction. We only found improvement for

using task over resting state fMRI, as well as better predictions for

whole brain compared to task specific networks. However, across

three behavioral domains, predictive performance was generally poor,

and there were no significant patterns indicating specificity of state,

networks, or task similarity, when looking at RMSE and COD. A signif-

icant improvement of prediction performance based on task-fMRI

(vs. resting-state fMRI) was only observed for the WM domain. Of

note, an isolated consideration of Pearson's correlation coefficient as

the sole index of model fit would have led us to different and appar-

ently overly optimistic conclusions. Hence, even with maximum

state–network–behavior compatibility, the relationship between FC

and behavior remains low. This study therefore emphasizes the need

for a critical assessment of prediction accuracies and suggests that

individual behavior cannot be successfully predicted based solely on

FC in task-specific networks.
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